Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22.411
Filter
1.
CNS Neurosci Ther ; 30(5): e14726, 2024 05.
Article in English | MEDLINE | ID: mdl-38715251

ABSTRACT

AIMS: The preoptic area (POA) of the hypothalamus, crucial in thermoregulation, has long been implicated in the pain process. However, whether nociceptive stimulation affects body temperature and its mechanism remains poorly studied. METHODS: We used capsaicin, formalin, and surgery to induce acute nociceptive stimulation and monitored rectal temperature. Optical fiber recording, chemical genetics, confocal imaging, and pharmacology assays were employed to confirm the role and interaction of POA astrocytes and extracellular adenosine. Immunofluorescence was utilized for further validation. RESULTS: Acute nociception could activate POA astrocytes and induce a decrease in body temperature. Manipulation of astrocytes allowed bidirectional control of body temperature. Furthermore, acute nociception and astrocyte activation led to increased extracellular adenosine concentration within the POA. Activation of adenosine A1 or A2A receptors contributed to decreased body temperature, while inhibition of these receptors mitigated the thermo-lowering effect of astrocytes. CONCLUSION: Our results elucidate the interplay between acute nociception and thermoregulation, specifically highlighting POA astrocyte activation. This enriches our understanding of physiological responses to painful stimuli and contributes to the analysis of the anatomical basis involved in the process.


Subject(s)
Astrocytes , Hypothermia , Nociception , Preoptic Area , Animals , Preoptic Area/drug effects , Preoptic Area/metabolism , Astrocytes/metabolism , Astrocytes/drug effects , Nociception/physiology , Hypothermia/chemically induced , Male , Mice , Receptors, Purinergic P1/metabolism , Mice, Inbred C57BL , Adenosine/metabolism , Capsaicin/pharmacology , Formaldehyde/toxicity , Formaldehyde/pharmacology
2.
Methods Cell Biol ; 186: 213-231, 2024.
Article in English | MEDLINE | ID: mdl-38705600

ABSTRACT

Advancements in multiplexed tissue imaging technologies are vital in shaping our understanding of tissue microenvironmental influences in disease contexts. These technologies now allow us to relate the phenotype of individual cells to their higher-order roles in tissue organization and function. Multiplexed Ion Beam Imaging (MIBI) is one of such technologies, which uses metal isotope-labeled antibodies and secondary ion mass spectrometry (SIMS) to image more than 40 protein markers simultaneously within a single tissue section. Here, we describe an optimized MIBI workflow for high-plex analysis of Formalin-Fixed Paraffin-Embedded (FFPE) tissues following antigen retrieval, metal isotope-conjugated antibody staining, imaging using the MIBI instrument, and subsequent data processing and analysis. While this workflow is focused on imaging human FFPE samples using the MIBI, this workflow can be easily extended to model systems, biological questions, and multiplexed imaging modalities.


Subject(s)
Paraffin Embedding , Humans , Paraffin Embedding/methods , Spectrometry, Mass, Secondary Ion/methods , Tissue Fixation/methods , Image Processing, Computer-Assisted/methods , Formaldehyde/chemistry
3.
Appl Immunohistochem Mol Morphol ; 32(5): 207-214, 2024.
Article in English | MEDLINE | ID: mdl-38712585

ABSTRACT

The New South Wales Brain Tissue Resource Centre is a human brain bank that provides top-quality brain tissue for cutting-edge neuroscience research spanning various conditions from alcohol use disorder to neurodegenerative diseases. However, the conventional practice of preserving brain tissue in formalin poses challenges for immunofluorescent staining primarily due to the formalin's tendency, over time, to create cross-links between antigens, which can obscure epitopes of interest. In addition, researchers can encounter issues such as spectral bleeding, limitations in using multiple colors, autofluorescence, and cross-reactivity when working with long-term formalin-fixed brain tissue. The purpose of the study was to test chromogen-based double immunolabeling to negate the issues with immunofluorescent staining. Colocalization of antigens was explored using chromogens 3-amino-9-ethylcarbazole (AEC) and 3,3,-diaminobenzidine in a sequential staining procedure where the AEC signal was eliminated by alcohol treatment. Combinations of 2 or 3 primary antibodies from the same or different species were trialed successfully with this protocol. The colocalization of antigens was also demonstrated with pseudocoloring that mimicked immunofluorescence staining. This staining technique increases the utility of archival formalin-fixed tissue samples.


Subject(s)
Formaldehyde , Immunohistochemistry , Tissue Fixation , Humans , Immunohistochemistry/methods , Tissue Fixation/methods , Staining and Labeling/methods , Tissue Banks , Brain/metabolism , Brain/pathology , Animals , 3,3'-Diaminobenzidine , Biological Specimen Banks
4.
Anat Histol Embryol ; 53(3): e13046, 2024 May.
Article in English | MEDLINE | ID: mdl-38712731

ABSTRACT

The present study aims to evaluate the morphometric and histopathological properties of Modified Elnady's plastinated tissue after a period compared to non-plastinated tissue. The plastination technique is utilized in research and teaching due to the potential health risks associated with prolonged exposure to formalin. The tissues and organs are permanently dried during plastination and can be used for further anatomical, histopathological and surgical educational purposes. This method involves drying tissue and allowing synthetic materials like glycerin to permeate it. The study compared non-plastinated and plastinated tissue post-plastination to determine if structural alterations differed from those linked to plastination. The study examined the histopathological examination of dogs' skin, muscles, liver, lung, and intestine using formalin-fixed organs for paraffin embedding and previously plastinated organs for a plastinated group. The study examined non-plastinated and plastinated tissues, their histological composition and biometric parameters revealing typical structures in the non-plastinated group. Plasmodiumted tissues exhibited a compacted appearance, volume changes, nuclear clarity, and cytoplasmic hypereosinophilia, with statistical differences between the two groups. The study reveals that plastinated tissues, after 5 years of plastination, maintain their histological architecture well, with some exceptions. Plastinated tissues can be utilized in future microscopic and immunological studies and will be beneficial for teaching and research.


Subject(s)
Liver , Lung , Plastination , Animals , Dogs , Plastination/methods , Lung/pathology , Liver/pathology , Skin/pathology , Skin/anatomy & histology , Intestines/anatomy & histology , Intestines/pathology , Paraffin Embedding/veterinary , Formaldehyde , Anatomy, Veterinary/education
5.
PLoS One ; 19(5): e0299557, 2024.
Article in English | MEDLINE | ID: mdl-38718072

ABSTRACT

The continued development in methylome analysis has enabled a more precise assessment of DNA methylation, but treatment of target tissue prior to analysis may affect DNA analysis. Prediction of age based on methylation levels in the genome (DNAmAge) has gained much interest in disease predisposition (biological age estimation), but also in chronological donor age estimation in crime case samples. Various epigenetic clocks were designed to predict the age. However, it remains unknown how the storage of the tissues affects the DNAmAge estimation. In this study, we investigated the storage method impact of DNAmAge by the comparing the DNAmAge of the two commonly used storage methods, freezing and formalin-fixation and paraffin-embedding (FFPE) to DNAmAge of fresh tissue. This was carried out by comparing paired heart tissue samples of fresh tissue, samples stored by freezing and FFPE to chronological age and whole blood samples from the same individuals. Illumina EPIC beadchip array was used for methylation analysis and the DNAmAge was evaluated with the following epigenetic clocks: Horvath, Hannum, Levine, Horvath skin+blood clock (Horvath2), PedBE, Wu, BLUP, EN, and TL. We observed differences in DNAmAge among the storage conditions. FFPE samples showed a lower DNAmAge compared to that of frozen and fresh samples. Additionally, the DNAmAge of the heart tissue was lower than that of the whole blood and the chronological age. This highlights caution when evaluating DNAmAge for FFPE samples as the results were underestimated compared with fresh and frozen tissue samples. Furthermore, the study also emphasizes the need for a DNAmAge model based on heart tissue samples for an accurate age estimation.


Subject(s)
DNA Methylation , Formaldehyde , Myocardium , Paraffin Embedding , Tissue Fixation , Humans , Paraffin Embedding/methods , Formaldehyde/chemistry , Myocardium/metabolism , Tissue Fixation/methods , Male , Adult , Female , Middle Aged , Cryopreservation/methods , Adolescent , Aged , Young Adult
6.
Environ Geochem Health ; 46(6): 206, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38724672

ABSTRACT

After confirming that formaldehyde (FA) is carcinogenic, many studies were conducted in different countries to investigate this finding. Therefore, according to the dispersion of related studies, a bibliometric review of the current literature was performed with the aim of better understanding the exposure to FA and the resulting health risk, for the first time, using the Scopus database and the two open-source software packages, Bibliometrix R package. After screening the documents in Excel, the data was analyzed based on three aspects including performance analysis, conceptual structure, and intellectual structure, and the results were presented in tables and diagrams. A total of 468 documents were analyzed over period 1977-2023, in which 1956 authors from 56 countries participated. The number of scientific publications has grown significantly from 1977 (n = 1) to 2022 (n = 19). Zhang Y., from the Yale School of Public Health (USA), was identified as the most impactful author in this field. The Science of the Total Environment journal was identified as the main source of articles related to exposure to formaldehyde by publishing 25 studies. The United States and China were the most active countries with the most international collaboration. The main topics investigated during these 46 years included "formaldehyde" and "health risk assessment", which have taken new directions in recent years with the emergence of the keyword "asthma". The present study provides a comprehensive view of the growth and evolution of studies related to formaldehyde and the resulting health risks, which can provide a better understanding of existing research gaps and new and emerging issues.


Subject(s)
Environmental Exposure , Formaldehyde , Formaldehyde/toxicity , Humans , Risk Assessment , Bibliometrics
7.
Cancer Med ; 13(9): e7189, 2024 May.
Article in English | MEDLINE | ID: mdl-38706442

ABSTRACT

OBJECTIVES: Endoscopic ultrasound-guided tissue acquisition (EUS-TA) is used for pathological diagnosis and obtaining samples for molecular testing, facilitating the initiation of targeted therapies in patients with pancreatic cancer. However, samples obtained via EUS-TA are often insufficient, requiring more efforts to improve sampling adequacy for molecular testing. Therefore, this study investigated the use of oil blotting paper for formalin fixation of samples obtained via EUS-TA. METHODS: This prospective study enrolled 42 patients who underwent EUS-TA for pancreatic cancer between September 2020 and February 2022 at the Osaka International Cancer Institute. After a portion of each sample obtained via EUS-TA was separated for routine histological evaluation, the residual samples were divided into filter paper and oil blotting paper groups for analysis. Accordingly, filter paper and oil blotting paper were used for the formalin fixation process. The total tissue, nuclear, and cytoplasm areas of each sample were quantitatively evaluated using virtual slides, and the specimen volume and histological diagnosis of each sample were evaluated by an expert pathologist. RESULTS: All cases were cytologically diagnosed as adenocarcinoma. The area ratios of the total tissue, nuclear, and cytoplasmic portions were significantly larger in the oil blotting paper group than in the filter paper group. The frequency of cases with large amount of tumor cells was significantly higher in the oil blotting paper group (33.3%) than in the filter paper group (11.9%) (p = 0.035). CONCLUSIONS: Oil blotting paper can increase the sample volume obtained via EUS-TA on glass slides and improve sampling adequacy for molecular testing.


Subject(s)
Formaldehyde , Pancreatic Neoplasms , Tissue Fixation , Humans , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/diagnostic imaging , Prospective Studies , Male , Female , Tissue Fixation/methods , Aged , Middle Aged , Endosonography/methods , Specimen Handling/methods , Adenocarcinoma/pathology , Adenocarcinoma/diagnostic imaging , Aged, 80 and over , Paper , Endoscopic Ultrasound-Guided Fine Needle Aspiration/methods
8.
Environ Sci Technol ; 58(19): 8372-8379, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38691628

ABSTRACT

The development of highly efficient catalysts for formaldehyde (HCHO) oxidation is of significant interest for the improvement of indoor air quality. Up to 400 works relating to the catalytic oxidation of HCHO have been published to date; however, their analysis for collective inference through conventional literature search is still a challenging task. A machine learning (ML) framework was presented to predict catalyst performance from experimental descriptors based on an HCHO oxidation catalysts database. MnOx, CeO2, Co3O4, TiO2, FeOx, ZrO2, Al2O3, SiO2, and carbon-based catalysts with different promoters were compiled from the literature. Notably, 20 descriptors including reaction catalyst composition, reaction conditions, and catalyst physical properties were collected for data mining (2263 data points). Furthermore, the eXtreme Gradient Boosting algorithm was employed, which successfully predicted the conversion efficiency of HCHO with an R-square value of 0.81. Shapley additive analysis suggested Pt/MnO2 and Ag/Ce-Co3O4 exhibited excellent catalytic performance of HCHO oxidation based on the analysis of the entire database. Validated by experimental tests and theoretical simulations, the key descriptor identified by ML, i.e., the first promoter, was further described as metal-support interactions. This study highlights ML as a useful tool for database establishment and the catalyst rational design strategy based on the importance of analysis between experimental descriptors and the performance of complex catalytic systems.


Subject(s)
Air Pollution, Indoor , Formaldehyde , Machine Learning , Oxidation-Reduction , Formaldehyde/chemistry , Catalysis
9.
Analyst ; 149(10): 2988-2995, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38602359

ABSTRACT

The use of formalin to preserve raw food items such as fish, meat, vegetables etc. is very commonly practiced in the present day. Also, formaldehyde (FA), which is the main constituent of formalin solution, is known to cause serious health issues on exposure. Considering the ill effects of formaldehyde, herein we report synthesis of highly sensitive triphenylmethane based formaldehyde (FA) sensors from a single step reaction of inexpensive reagents namely 4-hydroxy benzaldehyde and 2,6-dimethyl phenol. The synthetic method also provides highly pure product in bulk quantity. The analytical activity of the triphenylmethane sensor 1 with a limit of detection (LOD) value of 2.31 × 10-6 M for FA was significantly enhanced through induced deprotonation and thereafter a LOD value of 1.82 × 10-8 M could be achieved. To the best of our knowledge, the LOD value of the deprotonated form (sensor 2) for FA was superior to those of all the FA optical sensors reported so far. The mechanism of sensing was demonstrated by 1H-NMR titration and recording mass spectra before and after addition of FA to a solution of sensor 2. Both sensor 1 and sensor 2 exhibit quenching in emission upon addition of FA. A fluorescence study also demonstrates enhancement in analytical activity of the sensor upon induced deprotonation. Then the sensor was effectively immobilized into a hydrophilic and biocompatible starch-PVA polymer matrix which enabled detection of FA in a 100% aqueous system reversibly. Again, quick and effective sensing of FA in real food samples (stored fish) with the help of a computational application was demonstrated. The sensors have significant practical applicability as they effectively detect FA in real food samples qualitatively and quantitatively.


Subject(s)
Fishes , Formaldehyde , Limit of Detection , Trityl Compounds , Formaldehyde/analysis , Formaldehyde/chemistry , Animals , Trityl Compounds/chemistry , Trityl Compounds/analysis , Gases/chemistry , Gases/analysis , Seafood/analysis , Food Contamination/analysis , Solutions , Food Analysis/methods , Food Analysis/instrumentation , Spectrometry, Fluorescence/methods
10.
J Am Soc Cytopathol ; 13(3): 213-218, 2024.
Article in English | MEDLINE | ID: mdl-38575468

ABSTRACT

INTRODUCTION: Insulinoma-associated protein 1 (INSM1) is an immunohistochemical marker commonly used to confirm cytomorphological concordant neuroendocrine tumors/carcinomas (NETs/NECs), demonstrating high utility in small samples. Previous reports have suggested comparable INSM1 staining in CytoLyt-fixed cell blocks and formalin-fixed surgical pathology specimens. This study aimed to assess INSM1 immunoreactivity using both fixation methods and investigate potential factors contributing to its variable expression. MATERIALS AND METHODS: A retrospective query was performed (03/31/21-05/31/22) for NET/NEC cases that had both formalin- and CytoLyt-fixed cell blocks. We collected clinical data and reporting of immunostains for each case. INSM1 staining was evaluated in both fixation methods, and reported as positive, negative, or equivocal. Equivocal INSM1 staining was further scored as a percentage of 1%-100% and intensity of weak (faint staining), moderate (darker staining), and strong (dense staining). RESULTS: Our search identified 20 cases from diverse body sites, including mediastinal lymph nodes (40%), pancreas (35%), lung (20%), and porta hepatis lymph nodes (5%). All cases exhibited a widespread positivity (over 90%) in formalin-fixed cell blocks. In contrast, CytoLyt fixed cells showed a negative stain in 65% of cases and 30% exhibited an equivocal positivity. CONCLUSIONS: While INSM1 is previously reported as a sensitive (75%-100%) and specific (82.7%-100%) marker for NET/NECs, our study found a reduced immunohistochemical staining in CytoLyt-fixed cell blocks. Consequently, false negative INSM1 immunohistochemical results in CytoLyt-fixed cell block material may pose a pitfall in the diagnosis of NET/NEC.


Subject(s)
Biomarkers, Tumor , Formaldehyde , Immunohistochemistry , Repressor Proteins , Tissue Fixation , Humans , Retrospective Studies , Repressor Proteins/metabolism , Biomarkers, Tumor/metabolism , Immunohistochemistry/methods , Tissue Fixation/methods , Neuroendocrine Tumors/pathology , Neuroendocrine Tumors/metabolism , Neuroendocrine Tumors/diagnosis , Female , Middle Aged , Male , Aged , Adult , Fixatives , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/diagnosis , Carcinoma, Neuroendocrine/pathology , Carcinoma, Neuroendocrine/diagnosis , Carcinoma, Neuroendocrine/metabolism
11.
J Hazard Mater ; 471: 134307, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38678702

ABSTRACT

This systematic review and meta-analysis investigated studies on formaldehyde (FA) inhalation exposure in indoor environments and related carcinogenic (CR) and non-carcinogenic (HQ) risk. Studies were obtained from Scopus, PubMed, Web of Science, Medline, and Embase databases without time limitation until November 21, 2023. Studies not meeting the criteria of Population, Exposure, Comparator, and Outcomes (PECO) were excluded. The 45 articles included belonged to the 5 types of sites: dwelling environments, educational centers, kindergartens, vehicle cabins, and other indoor environments. A meta-analysis determined the average effect size (ES) between indoor FA concentrations, CR, and HQ values in each type of indoor environment. FA concentrations ranged from 0.01 to 1620 µg/m3. The highest FA concentrations were stated in water pipe cafés and the lowest in residential environments. In more than 90% of the studies uncertain (1.00 ×10-6 1.00 ×10-4) due to FA inhalation exposure was reported and non-carcinogenic risk was stated acceptable. The meta-analysis revealed the highest CR values due to inhalation of indoor FA in high-income countries. As 90% of the time is spent indoors, it is crucial to adopt effective strategies to reduce FA concentrations, especially in kindergartens and schools, with regular monitoring of indoor air quality.


Subject(s)
Air Pollution, Indoor , Formaldehyde , Inhalation Exposure , Formaldehyde/analysis , Formaldehyde/toxicity , Air Pollution, Indoor/analysis , Inhalation Exposure/analysis , Risk Assessment , Humans
12.
Int J Biol Macromol ; 267(Pt 1): 131448, 2024 May.
Article in English | MEDLINE | ID: mdl-38593901

ABSTRACT

Nowadays, various harmful indoor pollutants especially including bacteria and residual formaldehyde (HCHO) seriously threaten human health and reduce the quality of public life. Herein, a universal substrate-independence finishing approach for efficiently solving these hybrid indoor threats is demonstrated, in which amine-quinone network (AQN) was employed as reduction agent to guide in-situ growth of Ag@MnO2 particles, and also acted as an adhesion interlayer to firmly anchor nanoparticles onto diverse textiles, especially for cotton fabrics. In contrast with traditional hydrothermal or calcine methods, the highly reactive AQN ensures the efficient generation of functional nanoparticles under mild conditions without any additional catalysts. During the AQN-guided reduction, the doping of Ag atoms onto cellulose fiber surface optimized the crystallinity and oxygen vacancy of MnO2, providing cotton efficient antibacterial efficiency over 90 % after 30 min of contact, companying with encouraging UV-shielding and indoor HCHO purification properties. Besides, even after 30 cycles of standard washing, the Ag@MnO2-decorated textiles can effectively degrade HCHO while well-maintaining their inherent properties. In summary, the presented AQN-mediated strategy of efficiently guiding the deposition of functional particles on fibers has broad application prospects in the green and sustainable functionalization of textiles.


Subject(s)
Amines , Cellulose , Manganese Compounds , Oxides , Manganese Compounds/chemistry , Oxides/chemistry , Cellulose/chemistry , Amines/chemistry , Quinones/chemistry , Silver/chemistry , Formaldehyde/chemistry , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Textiles , Air Pollution, Indoor/prevention & control
13.
Prion ; 18(1): 40-53, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38627365

ABSTRACT

Prion disease is an infectious and fatal neurodegenerative disease. Western blotting (WB)-based identification of proteinase K (PK)-resistant prion protein (PrPres) is considered a definitive diagnosis of prion diseases. In this study, we aimed to detect PrPres using formalin-fixed paraffin-embedded (FFPE) specimens from cases of sporadic Creutzfeldt-Jakob disease (sCJD), Gerstmann-Sträussler-Scheinker disease (GSS), glycosylphosphatidylinositol-anchorless prion disease (GPIALP), and V180I CJD. FFPE samples were prepared after formic acid treatment to inactivate infectivity. After deparaffinization, PK digestion was performed, and the protein was extracted. In sCJD, a pronounced PrPres signal was observed, with antibodies specific for type 1 and type 2 PrPres exhibited a strong or weak signals depending on the case. Histological examination of serial sections revealed that the histological changes were compatible with the biochemical characteristics. In GSS and GPIALP, prion protein core-specific antibodies presented as PrPres bands at 8-9 kDa and smear bands, respectively. However, an antibody specific for the C-terminus presented as smears in GSS, with no PrPres detected in GPIALP. It was difficult to detect PrPres in V180I CJD. Collectively, our findings demonstrate the possibility of detecting PrPres in FFPE and classifying the prion disease types. This approach facilitates histopathological and biochemical evaluation in the same sample and is safe owing to the inactivation of infectivity. Therefore, it may be valuable for the diagnosis and research of prion diseases.


Subject(s)
Creutzfeldt-Jakob Syndrome , Gerstmann-Straussler-Scheinker Disease , Neurodegenerative Diseases , Prion Diseases , Prions , Humans , Prion Proteins , PrPSc Proteins/metabolism , Paraffin Embedding , Prion Diseases/diagnosis , Prion Diseases/metabolism , Creutzfeldt-Jakob Syndrome/pathology , Prions/metabolism , Gerstmann-Straussler-Scheinker Disease/metabolism , Endopeptidase K , Antibodies , Formaldehyde
14.
Toxicon ; 242: 107707, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38579983

ABSTRACT

This research presents the synthesis and characterization of Cu-doped Fe3O4 (Cu-Fe3O4) nanoparticles as a magnetically recoverable and reusable detoxifying agent for the efficient and long-lasting neutralization of bacterial toxins. The nanoparticles were synthesized using the combustion synthesis method and characterized through SEM, XRD, BET, TGA, and VSM techniques. The detoxification potential of Cu-Fe3O4 was compared with traditional formaldehyde (FA) in detoxifying epsilon toxin (ETx) from Clostridium perfringens Type D, the causative agent of enterotoxemia in ruminants. In vivo residual toxicity tests revealed that Cu-Fe3O4 could detoxify ETx at a concentration of 2.0 mg mL-1 within 4 days at room temperature (RT) and 2 days at 37 °C, outperforming FA (12 and 6 days at RT and 37 °C, respectively). Characterization studies using dynamic light scattering (DLS) and circular dichroism (CD) highlighted lower conformational changes in Cu-Fe3O4-detoxified ETx compared to FA-detoxified ETx. Moreover, Cu-Fe3O4-detoxified ETx exhibited exceptional storage stability at 4 °C and RT for 6 months, maintaining an irreversible structure with no residual toxicity. The particles demonstrated remarkable reusability, with the ability to undergo five continuous detoxification batches. This study provides valuable insights into the development of an efficient and safe detoxifying agent, enabling the production of toxoids with a native-like structure. The magnetically recoverable and reusable nature of Cu-Fe3O4 nanoparticles offers practical advantages for easy recovery and reuse in detoxification reactions.


Subject(s)
Bacterial Toxins , Copper , Formaldehyde , Formaldehyde/chemistry , Copper/chemistry , Animals , Bacterial Toxins/chemistry , Bacterial Toxins/toxicity , Clostridium perfringens , Magnetite Nanoparticles/chemistry
15.
Front Cell Infect Microbiol ; 14: 1329235, 2024.
Article in English | MEDLINE | ID: mdl-38638828

ABSTRACT

The metagenomic next-generation sequencing (mNGS) method is preferred for genotyping useful for the identification of organisms, illumination of metabolic pathways, and determination of microbiota. It can accurately obtain all the nucleic acid information in the test sample. Anthrax is one of the most important zoonotic diseases, infecting mainly herbivores and occasionally humans. The disease has four typical clinical forms, cutaneous, gastrointestinal, inhalation, and injection, all of which may result in sepsis or meningitis, with cutaneous being the most common form. Here, we report a case of cutaneous anthrax diagnosed by mNGS in a butcher. Histopathology of a skin biopsy revealed PAS-positive bacilli. Formalin-fixed paraffin-embedded (FFPE) tissue sample was confirmed the diagnosis of anthrax by mNGS. He was cured with intravenous penicillin. To our knowledge, this is the first case of cutaneous anthrax diagnosed by mNGS using FFPE tissue. mNGS is useful for identifying pathogens that are difficult to diagnose with conventional methods, and FFPE samples are simple to manage. Compared with traditional bacterial culture, which is difficult to cultivate and takes a long time, mNGS can quickly and accurately help us diagnose anthrax, so that anthrax can be controlled in a timely manner and prevent the outbreak of epidemic events.


Subject(s)
Anthrax , Skin Diseases, Bacterial , Male , Humans , Anthrax/diagnosis , Paraffin Embedding , Formaldehyde/therapeutic use , High-Throughput Nucleotide Sequencing/methods , Metagenomics/methods , Sensitivity and Specificity
17.
Chemosphere ; 355: 141866, 2024 May.
Article in English | MEDLINE | ID: mdl-38565375

ABSTRACT

Biochar-based materials for air treatment have gained significant attention for removing health-detrimental volatile organic compounds (VOCs) and particulate matter (PM) in indoor air settings. However, high turnaround time, multiple pretreatment processes involved, and high pore size and low surface area (>10 µm, <100 m2 g-1) of lignocellulosic feedstocks demand alternative biochar feedstock material. Considering this, we designed a simple first-of-its-kind indoor air scrubbing material using diatoms-enriched microalgae biochar. In the present study, the microalgae were cultivated on waste anaerobic digestate (biogas slurry) and were pyrolyzed at three different temperatures: 300 °C (BC300), 500 °C (BC500), and 700 °C (BC700). The BC500 and BC700 showed the highest removal efficiencies (99 %) for total volatile organic carbons (TVOCs) and formaldehyde (HCHO) at concentrations of 1.22 mg m-3 HCHO and 8.57 mg m-3 TVOC compared to 50% efficiency obtained with commercially available surgical, cloth, and N95 masks. The biochar obtained showed a high Brunauer-Emmett-Teller (BET) surface area of 238 m2 g-1 (BC500) and 480 m2 g-1 (BC700) and an average pore size of 9-11 nm due to the mesoporous characteristic of diatom frustules. The comparatively poor performance of BC300 was due to lower surface area (150 m2 g-1) arising from incomplete organic removal, as evidenced by FESEM-EDX and FTIR. The high removal efficiencies in BC500 and BC700 were also attributed to the presence of reactive functional groups such as -OH and R-NH2. Concurrently, the average particulate matter (PM10, PM2.5, and PM1) removal efficiency for BC500 and BC 700 ranged between 66 and 82.69 %. The PM removal performance of BC500 and BC700 was lower (15-20%) than commercially available masks. Overall, the present study highlights the importance of diatoms (reactive Si) present inside the pores of microalgal biochar for enhanced removal of PM, TVOCs, and HCHO at temperatures above 500 °C. This complete approach signifies a step towards establishing a self-sustainable and circular process characterized by minimal waste generation for indoor air treatment.


Subject(s)
Air Pollutants , Air Pollution, Indoor , Charcoal , Microalgae , Volatile Organic Compounds , Particulate Matter/analysis , Volatile Organic Compounds/analysis , Air Pollution, Indoor/analysis , Formaldehyde , Air Pollutants/analysis , Environmental Monitoring
18.
J Cancer Res Clin Oncol ; 150(4): 172, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38565653

ABSTRACT

PURPOSE: Visualizing mitochondria in cancer cells from human pathological specimens may improve our understanding of cancer biology. However, using immunohistochemistry to evaluate mitochondria remains difficult because almost all cells contain mitochondria and the number of mitochondria per cell may have important effects on mitochondrial function. Herein, we established an objective system (Mito-score) for evaluating mitochondria using machine-based processing of hue, saturation, and value color spaces. METHODS: The Mito-score was defined as the number of COX4 (mitochondrial inner membrane) immunohistochemistry-positive pixels divided by the number of nuclei per cell. The system was validated using four lung cancer cell lines, normal tissues, and lung cancer tissues (199 cases). RESULTS: The Mito-score correlated with MitoTracker, a fluorescent dye used to selectively label and visualize mitochondria within cells under a microscope (R2 = 0.68) and with the number of mitochondria counted using electron microscopy (R2 = 0.79). Histologically, the Mito-score of small cell carcinoma (57.25) was significantly lower than that of adenocarcinoma (147.5, p < 0.0001), squamous cell carcinoma (120.6, p = 0.0004), and large cell neuroendocrine carcinoma (111.8, p = 0.002). CONCLUSION: The Mito-score method enables the analysis of the mitochondrial status of human formalin-fixed paraffin-embedded specimens and may provide insights into the metabolic status of cancer.


Subject(s)
Formaldehyde , Lung Neoplasms , Humans , Paraffin , Paraffin Embedding , Mitochondria , Staining and Labeling
19.
Chemosphere ; 356: 142024, 2024 May.
Article in English | MEDLINE | ID: mdl-38614396

ABSTRACT

Indoor formaldehyde (HCHO) pollution poses a major risk to human health. Low-temperature catalytic oxidation is an effective method for HCHO removal. The high activity and selectivity of single atomic catalysts provide a possibility for the development of efficient non-precious metal catalysts. In this study, the most stable single-atom catalyst Ti-Ti4C3O2 was screened by density functional theory among many single atomic catalysts with two-dimensional (2D) monolayer Ti4C3O2 as the support. The computational results show that Ti-Ti4C3O2 is highly selective to HCHO and O2 in complex environments. The HCHO oxidation reaction pathways are proposed based on the Eley-Rideal (E-R) and Langmuir-Hinshelwood (L-H) mechanisms. According to the reaction energy and energy span models, the E-R mechanism has a lower maximum energy barrier and higher catalytic efficiency than the L-H mechanism. In addition, the stability of the Ti-Ti4C3O2 structure and active center was verified by diffusion energy barrier and ab initio molecular dynamics simulations. The above results indicate that Ti-Ti4C3O2 is a promising non-precious metal catalyst. The present study provides detailed theoretical insights into the catalytic oxidation of HCHO by Ti-Ti4C3O2, as well as an idea for the development of efficient non-precious metal catalysts based on 2D materials.


Subject(s)
Density Functional Theory , Formaldehyde , Oxidation-Reduction , Titanium , Formaldehyde/chemistry , Catalysis , Titanium/chemistry , Air Pollution, Indoor , Air Pollutants/chemistry , Molecular Dynamics Simulation
20.
Pathol Res Pract ; 257: 155309, 2024 May.
Article in English | MEDLINE | ID: mdl-38678848

ABSTRACT

Gene expression of formalin-fixed paraffin-embedded (FFPE) tissue may serve for molecular studies on cardiovascular diseases. Chemotherapeutics, such as doxorubicin (DOX) may cause heart injury, but the mechanisms of these side effects of DOX are not well understood. This study aimed to investigate whether DOX-induced gene expression in archival FFPE heart tissue in experimental rats would correlate with the gene expression in fresh-frozen heart tissue by applying RNA sequencing technology. The results showed RNA from FFPE samples was degraded, resulting in a lower number of uniquely mapped reads. However, DOX-induced differentially expressed genes in FFPE were related to molecular mechanisms of DOX-induced cardiotoxicity, such as inflammation, calcium binding, endothelial dysfunction, senescence, and cardiac hypertrophy signaling. Our data suggest that, despite the limitations, RNA sequencing of archival FFPE heart tissue supports utilizing FFPE tissues from retrospective studies on cardiovascular disorders, including DOX-induced cardiotoxicity.


Subject(s)
Cardiotoxicity , Doxorubicin , Formaldehyde , Paraffin Embedding , Sequence Analysis, RNA , Transcriptome , Animals , Cardiotoxicity/genetics , Formaldehyde/toxicity , Doxorubicin/adverse effects , Sequence Analysis, RNA/methods , Rats , Male , Tissue Fixation/methods , Myocardium/pathology , Myocardium/metabolism , Gene Expression Profiling/methods , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...